METHOD OF TREATING LACTOSE INTOLERANCE USING GENETICALLY ENGINEERED BACTERIA

Inventors: Kenneth Manzo, Shohola, PA (US); Jay Sharma, San Pedro, CA (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 653 days.

Appl. No.: 11/871,113

Filed: Oct. 11, 2007

Prior Publication Data
US 2009/0098087 A1 Apr. 16, 2009

Int. Cl.
A01N 63/00 (2006.01)
C12N 15/00 (2006.01)
C12N 1/20 (2006.01)

U.S. Cl. 424/93.45; 424/93.1; 424/93.2; 435/320.1; 435/252.9

Field of Classification Search None See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS
2,762,749 A 9/1956 Myers
3,520,835 A 11/1971 Harvey
4,179,335 A 12/1979 Long
4,237,230 A 12/1980 Iida
4,323,651 A 4/1982 Long
5,633,012 A 5/1997 Ford
5,952,021 A 9/1999 Santus
6,008,027 A 12/1999 Langner
6,110,456 A 8/2000 Duing
6,562,339 B2 5/2003 Eisenhardt
6,599,882 B1 7/2003 Rogoff

FOREIGN PATENT DOCUMENTS

OTHER PUBLICATIONS

(Continued)

Primary Examiner — Robert M Kelly
Assistant Examiner — Kelaginamane T Hiriyanva
(74) Attorney, Agent or Firm — Sanjesh Prabha Sharma; Chen Yoshimura LLP

ABSTRACT

The present invention relates to genetically engineered bacteria that are able to colonize the mammalian intestine and actively produce mammalian lactase (lactase-phlorizin hydrolase or LPH). This lactose-digesting enzyme is stable and active under the conditions normally found in the mammalian small intestine. Experimental subjects colonized with the genetically engineered bacteria showed improved ability to digest lactose in dairy foods.

5 Claims, 1 Drawing Sheet
OTHER PUBLICATIONS

* cited by examiner
FIGURE 1

pS1234T
11.09 kb
METHOD OF TREATING LACTOSE INTOLERANCE USING GENETICALLY ENGINEERED BACTERIA

BACKGROUND OF THE INVENTION

Lactose Intolerance

Dairy foods are an important source of protein, riboflavin and calcium for the United States, Europe, Asia, Africa and the many other areas of the world. However, many individuals suffer from lactose intolerance. This condition results from absence or insufficient production of the enzyme lactase. Acquired lactase deficiency is the most common disorder of complex carbohydrate absorption throughout the world, affecting up to 75% percent of the world’s population. In the United States, 15% of Caucasians, over 50% of Hispanics and over 80% of African Americans suffer from lactose intolerance. The disorder is characterized by gastrointestinal symptoms of excessive gas production, abdominal pain, cramps, bloating and diarrhea after excessive consumption of lactose-containing foods such as dairy and dairy-based products.

In infancy, mammals have a high level of lactase activity in the lining of the upper intestinal tract, because they depend on lactose as the primary carbohydrate in their diet. However, in humans, the lactase expression is diminished by about 90% between ages two and five. This condition is called primary lactase deficiency. Many Northern Europeans, Mediterranean and their descendants carry a mutation that prevents this natural decrease in lactase production. These individuals are able to consume milk as adults. However, large portions of the world population, such as Southern Europeans, East Asians and Sub-Saharan Africans have primary lactase deficiency.

Secondary lactase deficiency results from injury or disease of the small intestine. For example, celiac disease, inflammatory bowel syndrome (IBS) and Crohn’s disease are often accompanied by lactase deficiency. These diseases occur in all ethnic groups.

Lactose Metabolism

Lactose is a disaccharide of glucose and galactose linked by a beta-D-glycosidic bond. The disaccharide is digested into its individual sugars by the lactase (beta-D-galactosidase) produced in the small intestine by the cells of the intestinal brush border. Glucose and galactose are absorbed in the small intestine. When lactose is absent from the small intestine, undigested lactose reaches the large intestine. There the resident bacteria metabolize lactose through fermentation generating gas. The gas is responsible for symptoms such as pain, cramps and flatulence. In addition, the undigested lactose increases osmotic pressure in the intestine, causing increased excretion of water and diarrhea.

Supplementing Lactase

There are several ways of delivering lactase to the gastrointestinal tract. As a simplest method, one can ingest a tablet of the isolated enzyme. Enzymes that break down lactose may be isolated from a variety of microorganisms, such as yeast, bacteria and fungi, such as Saccharomyces fragilis, Torula cernoris, Lactobacillus bulgaricus, Aspergillus oryzae, Aspergillus flavus and Aspergillus niger. For example, U.S. Pat. No. 2,762,749 teaches preparing a lactase enzyme from budding yeast (Saccharomyces cerevisiae and Torula genuses) to supplement milk products where lactose crystallization is a problem. Lactase from fungi, such as Aspergillus, is described in U.S. Pat. No. 3,620,924. Isolating bacterial lactase (from the genus Bacillus) is described in U.S. Pat. Nos. 4,179,335, 4,237,230 and 4,323,651.

Several problems are associated with lactase replacement products. First, these products are not retained in the gastrointestinal tract. Lactase pills must be taken with each dairy-containing meal. When the subject forgets to take the pill, or is unaware that food contains dairy, the symptoms of lactose intolerance are bound to recur.

Another problem is that many lactase enzymes from other species function poorly in the mammalian small intestine. The pH of the duodenum, where most of the normal lactose digestion occurs, is between 6.0 and 6.5. In contrast, as taught in the U.S. Pat. No. 6,562,339, a fungal lactase has a pH optimum of 4.8 and is only 10% active at pH 6.5. Many bacterial beta-galactosidases have a pH optimum above 7.0. Fortunately, a few enzymes from the Bacillus genus, as described for example, in U.S. Pat. No. 4,179,335, have a pH optimum near 6.0.

Another way to supplement lactase involves ingesting live or killed lactase-producing bacteria. For example, it is known that persons with mild lactose intolerance are able to tolerate yogurt but not milk, although both products contain the same amount of lactose. This is due to the fact that bacteria present in yogurt, such as Streptococcus thermophilus, Lactobacilli, Acidophilus and Bifidus species, express functional lactase.

Thus, to improve the ability to digest lactose, one may consume yogurt products containing live and active cultures of these bacteria. Alternatively, one can ingest capsules that contain lyophilized live yogurt bacteria, as taught for example, in the U.S. Pat. No. 6,008,027. For an enhanced effect, bacteria can be combined with isolated lactase in the same enterically coated capsule, as taught in the U.S. Pat. No. 5,952,021 or Application Publication No. 2005/0100535.

Besides yogurt bacteria, other lactase-producing species can be used to improve lactase tolerance. For example, Korean researchers have isolated strains with lactase activity and good resistance to gastric acid. These strains come from Lactobacillus fermentum, (WO Publication KR3064030A), Lactococcus lactis (WO Publication KR4044300A) and Lactobacillus plantarum (WO Publication KR2088797A).

Unfortunately, physicians report limited success with treating lactose intolerance with naturally occurring bacterial cultures. The review of the literature conducted by family practitioners at the University of Pittsburgh (“Do probiotics reduce adult lactose intolerance?” J Fam. Pract., 2005; v. 54, No. 7, p. 613-620) concluded that overall, the strategy was ineffective. The authors suggest that this is due to variation in bacterial viability and ability to produce lactase between the different dairy products and supplements. According to the study, with a few exceptions, most of these products do not provide sufficient lactase activity to alleviate the symptoms of lactose intolerance.

The symptoms of lactose intolerance were not relieved even when the most promising bacterium, Lactobacillus acidophilus was used. Among the yogurt bacteria, L. acidophilus has one of the highest natural levels of lactase and superior ability to adhere to the intestinal wall. Nevertheless, a Tufts University study “A randomized trial of Lactobacillus acidophilus BG2F04 to treat lactose intolerance,” Am. J. Clin. Nutr. 1999, 69:140-146, concluded that even this bacterium was ineffective against the symptoms of lactose intolerance.

Using genetically-engineered bacteria to digest lactose is also known in the art. For example, U.S. Pat. No. 6,833,260 describes bacteria engineered to produce bacterial beta-galactosidase under the control of a constitutive promoter. Compared to the parent strain, the engineered bacteria produce more enzyme, although it is still of bacterial origin.
A more aggressive method of treating lactose intolerance involves gene therapy where the lactase gene is delivered directly into the cells of the intestinal wall, as described in U.S. Pat. No. 6,110,456. This method has several disadvantages. First, virus-driven gene therapy carries its own risks associated with the vector and the helper virus. Second, the target cells for the therapy, the intestinal epithelium, are constantly shedding. Unless the stem cells at the base of the inner layer of the intestinal wall are transformed with the new gene, the expression of lactase will be temporary. The newly emerging layers of intestinal cells would need to be repeatedly retransformed with another dose of the gene.

In summary, there is a need for a safe but long-lasting treatment of lactose intolerance. Ideally, one treatment would last for months without re-application. An ideal treatment would involve a lactase enzyme optimized for action under the conditions found in the mammalian small intestine.

SUMMARY OF THE INVENTION

The present invention relates to genetically engineered bacteria that are able to colonize the mammalian intestine and actively produce mammalian enzymes for the hydrolysis of lactose. The lactose-digesting enzymes are stable and active under the conditions normally found in the mammalian small intestine.

DEFINITIONS

"Small intestine" is the part of the gastrointestinal tract between the stomach and the large intestine. In vertebrate animals, small intestine is composed of duodenum, jejunum, and ileum.

"Large intestine" is the final part of the gastrointestinal tract in vertebrate animals.

"Resident bacteria" or "resident bacterial microflora" refers to bacteria that naturally colonize a host organ, such as gastrointestinal tract, or genetically altered strains of such bacteria.

"Gene" is the segment of DNA involved in producing a polypeptide chain; it includes regions preceding and following the coding sequence.

"Polypeptide" or "protein" is a polymer of amino acid residues encoded by at least a portion of the coding sequence of the gene.

"Enzymatically active protein" refers to a polypeptide that has enzymatic activity i.e. can catalyze specific chemical reactions of the proper substrates under proper conditions either within or outside of a cell where the polypeptide is produced.

"Genetically engineered bacteria" refers to bacterial cells that replicate a heterologous nucleic acid, or express a polypeptide encoded by a heterologous nucleic acid.

"Heterologous nucleic acid" is one that originates from a source foreign to the particular host cell, or, if from the same source, is modified from its original form.

"Promoter" is a nucleic acid sequence that acts as a signal sequence necessary to initiate transcription of a gene.

"Gene expression" as referred to in this application is the transcription (production of mRNA) followed by translation (production of a polypeptide encoded by the gene).

"Plasmid" is a circular double-stranded DNA molecule, separate from chromosomal DNA and capable of autonomous replication and stable propagation in the host cell.

"Lactic acid bacteria" is a group of bacterial species comprised of Gram positive, low-GC-content, acid tolerant, non-sporulating, non-respiring rods or cocci that produce lactic acid as the major metabolic end-product of carbohydrate fermentation. This group includes the genera of Lactobacillus, Leuconostoc, Pedicoccus, Lactococcus, Streptococcus, Aerococcus, Carnobacterium, Enterococcus, Oenococcus, Teragenococcus, Yagococcus, and Weisella.

"Homolaetic lactic acid bacteria" are a subgroup of lactic acid bacteria that catalyze one mole of glucose through glycolysis (Embden-Meyerhof-Parnas (EMP) pathway) to yield two moles of pyruvate that is further reduced to lactate. This subgroup includes the genera of Lactococcus, Enterococcus, Streptococcus and Pedicoccus.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a map of the plasmid pS1234T.
FIG. 2 is a detailed map of the insert in the plasmid pS1234T.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides intestine-colonizing bacteria, such as for example, Lactobacillus acidophilus, that are genetically altered to express mammalian lactase activity. Using genetically-engineered lactic acid bacteria has several advantages over the prior art method of lactase supplementation. First, bacteria are able to self-replicate while retaining the inserted lactase gene. Second, lactic acid bacteria are normally present in milk and yogurt have been proven safe over the millennia since humans have been ingesting these foods.

Bacterial Strains

The preferred embodiment involves the use of bacterium Lactobacillus acidophilus, however other related or similar species found in dairy products may also be used. The suitable bacteria belong to the group homolaetic Lactic Acid Bacteria (LAB). Representative homolaetic LAB genera include Lactobacillus, Enterococcus, Streptococcus, Pedicoccus and group I lactobacilli. Common examples from this group include Lactobacillus acidophilus, Lactobacillus delbrueckii subsp. bulgaricus (often referred to as L. bulgaricus), Bifidobacterium lactis and Streptococcus thermophilus.

Lactobacillus acidophilus was originally isolated from feces of infants. It can also be isolated from mouth and vagina of children and adults. In other animals, this bacterium can be found in the intestinal tract of turkeys and chickens and mouth and intestinal tract of rats and hamsters. A strain of this species is available from American Tissue Culture Collection (ATCC) as #53544. The strain was transformed with a recombinant genetic construct incorporating a coding sequence for a mammalian lactase.

Lactase Gene

The mammalian gene selected for this invention is a human gene encoding lactase-phlorizin hydrolase (LPH) (Mantei et al., EMBO J. 7:2705-2713 (1988)). LPH, sometimes called small-intestinal lactase, is a major digestive enzyme in the small intestine of newborns. The enzyme is first synthesized as a 215-245 kDa precursor, comprising four tandemly repeated domains (I-IV). Proteolytic cleavage of the precursor separates LPH-alpha (domains I-II), devoid of enzymatic function, and liberates the mature enzyme, LPH-beta consisting of domains III and IV. LPH-beta has enzymatic activity and is anchored to the membrane via a C-terminal hydrophobic segment.

The lactase activity can be measured in vitro by any number of well-known methods. One method utilizes O-nitrophenoxyacetate (ONP) as a substrate and spectrophotometrically measures the product O-nitrophenoxyacetate.
(ONP). The amount of ONP is then divided by the reaction time and the weight of the reaction mixture or the number of cells in the reaction. A unit of lactase activity can be expressed in umol ONP/min per gram of dry weight.

Genetic Construct

The genetic construct used for this invention is based on a plasmid vector pRLU61, capable of replicating in Gram-positive bacteria. See Jost et al., Biochem. J. 327:95-103 (1997).

The mRNA sequence of human LPH (in the cDNA form) has a Genebank accession no. X07994, and is reproduced below as SEQ. ID NO. 1.

Plasmid pS12345 (FIG. 1) was constructed by inserting the LPH cDNA (EcoRI fragment) into the unique EcoRI site of pRLU61. The full-length cDNA sequence of LPH was cloned as described in the Examples section. In the pS12345, the LPH coding sequence is driven by a constitutive CMV promoter.

The full-length precursor of LPH (domains I-IV) contained a proteolytic cleavage signal between domains II and III. When introduced into the host cells, the precursor was cleaved by the host proteases as evidenced by the appearance of measurable lactase activity. The plasmid produced expression of LPH in both prokaryotic and eukaryotic cells, including rat epithelial cells and Chinese hamster ovary (CHO) cells and bacterial cells as further described below.

Experimental Animals

Rats (Sprague Dawley) were used for this experiment. The animals were divided into six groups: Groups A and B received no treatments and served as controls. Groups C and D ingested genetically engineered *Lactobacillus acidophilus*. Groups E and F ingested wild-type *Lactobacillus acidophilus*. In Groups C and D, prior to ingestion of the bacteria, the animal’s gut was flushed with antibiotics for a day. Then the bacteria were ingested on the following day. This treatment enables the bacteria to gain competitive advantage over the preexisting microflora and take up residence in the small intestine.

After bacteria were given time to colonize the intestine, the animals were fed lactose-containing foods and their blood glucose level was monitored. At the same time, blood lactase activity was measured spectrophotometrically using ONPG as a substrate. As shown in Table 1, animals colonized with genetically engineered *Lactobacillus acidophilus* (Groups C and D) demonstrated the highest levels of lactase activity as measured directly and evidenced by the appearance of blood glucose.

Table 1 shows weekly measurements of blood glucose and lactase activity following the initial ingestion of bacteria. After a 12-hour overnight fast, the animals were fed lactose-containing food. A duplicate measurement was taken at each of the indicated time points in minutes after the animals consumed lactose-containing food. The measurements were taken weekly for five weeks (W1-W5). Blood glucose is expressed in mg/dL, lactase activity is expressed in units equal to umol ONP/min per gram of dry weight.

TABLE 1

<table>
<thead>
<tr>
<th></th>
<th>Blood Glucose</th>
<th>Lactase Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>W1</td>
<td>W2</td>
</tr>
<tr>
<td>Group C</td>
<td>(antibiotics pre-treatment and GE bacteria)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>160</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>180</td>
<td>177</td>
<td>170</td>
</tr>
<tr>
<td>190</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>200</td>
<td>190</td>
<td>190</td>
</tr>
</tbody>
</table>

Group D	(GE bacteria)									
0	125	125	125	125	125	110	110	110	110	110
125	125	125	125	125	110	110	110	110	110	
160	160	160	160	160	130	130	130	130	130	
180	185	180	180	180	160	160	160	160	160	
190	185	180	180	180	180	180	180	180	180	
200	185	180	180	180	180	180	180	180	180	

Group E	(antibiotics pre-treatment and wild-type bacteria)									
Blood Glucose, mg/dL	Lactase Activity									
Min	W1	W2	W3	W4	W5	W1	W2	W3	W4	W5
0	125	125	125	125	125	110	110	110	110	110
125	125	125	125	125	110	110	110	110	110	
160	160	160	160	160	120	120	120	120	120	
180	140	135	130	130	120	120	120	120	120	
200	140	135	130	130	120	120	120	120	120	
TABLE 1-continued

<table>
<thead>
<tr>
<th>Blood Glucose and Lactase Activity</th>
<th>W1</th>
<th>W2</th>
<th>W3</th>
<th>W4</th>
<th>W5</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>160</td>
<td>160</td>
<td>161</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>90</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>120</td>
<td>175</td>
<td>175</td>
<td>172</td>
<td>170</td>
<td>170</td>
</tr>
</tbody>
</table>

Group F (wild-type bacteria)

<table>
<thead>
<tr>
<th>Blood Glucose, mg/dL</th>
<th>W1</th>
<th>W2</th>
<th>W3</th>
<th>W4</th>
<th>W5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>30</td>
<td>135</td>
<td>135</td>
<td>135</td>
<td>135</td>
<td>135</td>
</tr>
<tr>
<td>60</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>90</td>
<td>170</td>
<td>170</td>
<td>160</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>120</td>
<td>175</td>
<td>175</td>
<td>175</td>
<td>175</td>
<td>175</td>
</tr>
</tbody>
</table>

Lactase Activity

<table>
<thead>
<tr>
<th>W1</th>
<th>W2</th>
<th>W3</th>
<th>W4</th>
<th>W5</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>110</td>
<td>110</td>
<td>110</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
</tbody>
</table>

Next, lactase activity in the stool was measured. As shown in Table 2, animals colonized with genetically engineered Lactobacillus acidophilus (Groups C and D) demonstrated the highest levels of lactase activity in the stool.

Table 2 shows weekly measurements of stool lactase activity following the initial ingestion of bacteria. A duplicate measurement was taken each week. The measurements were taken weekly for seven weeks (W1-W7). Lactase activity is expressed in units equal to umol ONP/min per gram of dry weight. The gender of the animals is also indicated as M or F.

TABLE 2

<table>
<thead>
<tr>
<th>Stool Lactase Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>Group A (Control)</td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>Group B (Control)</td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>Group C (antibiotics pre-treatment and GE bacteria)</td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>F</td>
</tr>
</tbody>
</table>

Group D (GE bacteria)

M	175	175	172	172	169	169
M	175	175	172	172	169	169
F	175	175	172	172	169	169
F	175	175	172	172	169	169

Finally, the animals were sacrificed and the intestinal lactase activity was measured directly. As shown in Table 3, animals colonized with genetically engineered Lactobacillus acidophilus (Groups C and D) demonstrated the highest levels of lactase activity in the extracts.

Table 3 shows lactase activity in umol ONP/min per gram of dry weight. For each animal a sample was taken from the stomach as well as two sections of the small intestine: duodenum and jejunum. The time is measured after the consumption of lactase-containing foods, following a 12-hour overnight fast. Experimental Groups A-F are as described above. The gender of animals is indicated as M or F.

TABLE 3

<table>
<thead>
<tr>
<th>Lactase Activity in Intestinal Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Group sections</td>
</tr>
<tr>
<td>Group A</td>
</tr>
<tr>
<td>Duodenum</td>
</tr>
<tr>
<td>Jejunum</td>
</tr>
<tr>
<td>Group B</td>
</tr>
<tr>
<td>Duodenum</td>
</tr>
<tr>
<td>Jejunum</td>
</tr>
<tr>
<td>Group C</td>
</tr>
<tr>
<td>Duodenum</td>
</tr>
<tr>
<td>Jejunum</td>
</tr>
<tr>
<td>Group D</td>
</tr>
<tr>
<td>Duodenum</td>
</tr>
<tr>
<td>Jejunum</td>
</tr>
</tbody>
</table>

Group sections | 0 min | 60 min | 90 min | 120 min |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A</td>
<td>Stomach</td>
<td>0.09</td>
<td>0.08</td>
<td>0.06</td>
</tr>
<tr>
<td>Duodenum</td>
<td>0.07</td>
<td>0.08</td>
<td>0.07</td>
<td>0.06</td>
</tr>
<tr>
<td>Jejunum</td>
<td>0.04</td>
<td>0.03</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>Group B</td>
<td>Stomach</td>
<td>0.08</td>
<td>0.09</td>
<td>0.05</td>
</tr>
<tr>
<td>Duodenum</td>
<td>0.06</td>
<td>0.08</td>
<td>0.07</td>
<td>0.05</td>
</tr>
<tr>
<td>Jejunum</td>
<td>0.04</td>
<td>0.03</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>Group C</td>
<td>Stomach</td>
<td>0.08</td>
<td>0.09</td>
<td>0.06</td>
</tr>
<tr>
<td>Duodenum</td>
<td>0.06</td>
<td>0.07</td>
<td>0.05</td>
<td>0.03</td>
</tr>
<tr>
<td>Jejunum</td>
<td>0.33</td>
<td>0.34</td>
<td>0.33</td>
<td>0.32</td>
</tr>
<tr>
<td>Group D</td>
<td>Stomach</td>
<td>0.08</td>
<td>0.09</td>
<td>0.07</td>
</tr>
<tr>
<td>Duodenum</td>
<td>0.06</td>
<td>0.08</td>
<td>0.07</td>
<td>0.06</td>
</tr>
<tr>
<td>Jejunum</td>
<td>0.33</td>
<td>0.34</td>
<td>0.33</td>
<td>0.32</td>
</tr>
</tbody>
</table>
Such capsules are well known in the art. For example, U.S. Pat. No. 5,633,012 describes methods of microencapsulating lyophilized lactobacilli using alginate, polyacryl and a variety of other organic polymers. U.S. Pat. No. 5,952,021 teaches encapsulating bacteria in a methylacrylate-based polymers sold under the brand names EUDRAGIT S® and EUDRAGIT L®. These polymers are insoluble in acid, but dissolve at neutral pH found in the small intestine.

As is demonstrated above, to maximize the competitive advantage of the ingested bacteria, a subject may be pre-treated with an antibiotic before the bacterial culture is administered. Suitable antibiotics are, for example amoxicillin and neomycin.

As an alternative to lyophilization, the genetically engineered bacteria may be ingested as a live culture. The bacteria may be suspended in nutrient medium or prepared as a dairy product. Such products containing live bacteria are well known in the art. For example, Bio-K+ International, Inc. of Laval, Quebec, sells 1/2 oz cups of a yogurt-like product that contains a concentrated culture (up to 50 billion) of live and active cultures of lactobacilli. The cultures of the bacteria of the present invention may be prepared as a similar dairy product.

To maximize the survival of live cultures during the passage through the stomach, a subject may be pre-treated with a simple antacid such as baking soda or Alka-Seltzer® or an acid-reducing medication, such as omeprazole sold by Merck & Co. under the brand name PRILOSEC®.

EXAMPLES

The following examples are meant to illustrate but not limit the invention.

Bacterial Strains

Bacterial strain was isolated from raw milk. The cultures were grown at 37°C. The optimum temperature is 35-38°C. The upper limit of temperature tolerance is about 48°C, the lower limit is above 22°C, as no significant growth is observed at 22°C. Growth occurs at initial pH values between 5.0 and 7.0, but the optimum pH range is 5.5-6.0.

The cultures were grown in Terrific Broth medium (per liter: 12 g bacto-tryptone, 24 g yeast extract, 4 ml glycerol, 0.017M KH₂PO₄, 0.072M K₂HPO₄). Biochemical characteristics of this species are as follows: it metabolizes arginine into ammonia; ferments lactose into galactose and glucose, which in turn is further fermented into lactic acid; and also ferments amygdalin, cellobiose, fructose, galactose and maltose.

Genetic Construct

The plasmid pSI2341 for expression in L. acidophilus was obtained by first assembling an insert (Fig. 2) in an E. coli plasmid pLPH. The plasmid pLPH was prepared in six steps. First, screening of an intestinal cDNA library resulted in isolation of a 2,400 bp clone that contained a BamHI/PvuII fragment encompassing the putative LPH cleavage site. The BamHI/PvuII fragment was isolated for cloning.

Second, an EcoRI/BamHI fragment, corresponding to the nucleotides 1-1244 of the LPH cDNA was amplified by PCR using oligonucleotides LPH1 (SEQ ID NO. 2) and LPH1300 (SEQ ID NO. 3). This fragment was cloned into a commercially available vector pGEM4Z, generating a plasmid pl.LPH. pl.LPH contained nucleotides 1-1244 of LPH cDNA.

Third, a PvuII/HindIII fragment corresponding to the nucleotides 2886-3572 of the LPH cDNA was amplified by PCR using oligonucleotides LPH2841 (SEQ ID NO. 4) and LPH3500 (SEQ ID NO. 5). This PvuII/HindIII fragment and the isolated BamHI/PvuII fragment described in the first
paragraph of this section were cloned by three-way ligation into pLPH1, using the BamHI and HindIII sites, generating a plasmid pLPH2. pLPH2 contained nucleotides 1-3572 of LPH cDNA.

Fourth, a HindIII/StyI fragment corresponding to the nucleotides 3572-5472 of the LPH cDNA was amplified by PCR using oligonucleotides LPH5461 (SEQ ID NO. 6) and cLPH5470 (SEQ ID NO. 7).

Fifth, an StyI/EcoRI fragment corresponding to the nucleotides 5472-6270 of the LPH cDNA was amplified by PCR using oligonucleotides LPH5461 (SEQ ID NO. 8) and cLPH6270 (SEQ ID NO. 9). This StyI/EcoRI fragment and the HindIII/StyI fragment described in the preceding paragraph were cloned by three-way ligation into pGEM4Z, using the EcoRI and HindIII sites, generating a plasmid pLPH3. pLPH3 contained nucleotides 3572-6270 of LPH cDNA.

Finally, the EcoRI/HindIII fragment from pLPH2 (nucleotides 1-3572 of LPH cDNA) and the HindIII/EcoRI fragment from pLPH3 (nucleotides 3572-6270 of LPH cDNA) were ligated in a three-way ligation into the EcoRI site of pGEM4Z, generating pLPH3. The plasmid pLPH3 contained a full cDNA sequence of LPH.

LPH1 (SEQ ID NO. 2)
5'-AAAGATTCCTCTTCATAGAAATGGGCTGCTTTGGCAGATAG-3';
cLPH1300 (SEQ ID NO. 3)
5'-CTGCCCCACTCCGATCTGCCTTTGCG-3';
LPH2841 (SEQ ID NO. 4)
5'-AAAGAATTCCTCTCCGATCGATAG-3';
cLPH3600 (SEQ ID NO. 5)
5'-GACGTCGCTCTCTGCTCTAAGA-3';
LPH5461 (SEQ ID NO. 6)
5'-AAGCTCGAGCTATTACAACCCGATAG-3';
cLPH6270 (SEQ ID NO. 9)
5'-AAAGATTCCTCTTCATAGAAATGGGCTGCTTTGGCAGATAG-3';

For experimental expression in mammalian cells, the full-length PH sequence (EcoRI fragment containing nucleotides 1-6270) was subcloned into the EcoRI site of pCMV2 (Invitrogen, Carlsbad, Calif.) to generate pS12347 (FIG. 1).

Experimental Animals

Sprague-Dawley rats were housed under standard conditions and fed a standard diet. Water was given ad libitum. For Groups D and F, the animals were pre-treated with amoxicillin or neomycin. For all groups, except control groups A and B, a suspension of bacterial cells was given with yogurt as food.

At the end of 14 weeks the animals were sacrificed. The following parameters were measured during the course of the study: blood glucose concentration, lactase activity in the blood and stool, blood pH and total body weight. At the end of the study, lactase activity in the intestinal contents and the composition of intestinal microflora were also measured.

Measuring Blood Glucose Concentration

To measure blood glucose concentration, blood was taken from the tail vein. 0.7 ml was collected from each animal. The test was done using a blood glucose meter.

Measuring Blood, Stool and Intestinal Lactase Activity

The lactase activity was determined by United States Pharmacopeia (USP) method (USP27, official monograph pages 1062-1063). The stool was dispensed in buffer prior to the assay. Sections of the intestine were dissected and the contents were dispersed in buffer prior to the assay.

Counting the Number of Lactococci in the Intestine

The numbers of genetically engineered lactococci and wild-type lactococci were measured by suspending the intestinal contents and plating serial dilution of the suspensions on solid medium. The lactococci were detected by microscopic examination of the bacterial flora under Olympus inverted microscope based on the bacterial cell's morphology. The genetically engineered lactococci were detected.

The above examples are provided to illustrate the invention and not to limit its scope. Other variants of the invention will be readily apparent to one of ordinary skill in the art and are encompassed by the appended claims.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 9
<210> SEQ ID NO 1
<211> LENGTH: 6274
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 1
gtttcagga aatgaggagt tgtggcgact tagtctttat tgtgttcgta agtttttcac 60
gecggcggttc agacgtgagg tgtgtagaaaa atttcattttc caccggggctgt cctctaacc 120
atgactctgg gcccactcct aagtgcttcat ggagactggc gatgttctac tttttgacgac 180
gggggagaga cattgatgt ttgtccacag cactggcggcatt cttctcgca gaaatactca 240
gcgctttct ggtgatcag atccacctt atagggatt tttgtctagg gccagtcatcc 300
tggccagg aacgacccag aatccagagc agaggacact gcagtggtcc gggcgatcct 360
tcgacgttc caggtacagc gacgttcagc cattgctcat cttgtcaccc cagactctcc 420
...-continued

tgcgccagc accgggaga accgaagctt tcgtgagctt ttgcgagcag tattgccacat 489
	gcgtctttcta ttctctcccgg gacgtagtgg gattgctgtt cacccccgagt gacctggaggg 548
	ggtgtgatca caggagcttt ccccagagaat ccaacagcag accttactgtg 600
	atctcccag cttaagctgta cagatttacc cagaaagctg tggatttctcg ggtggaaaac 660
	ttctgatgatc cggctctgcgt ggagtccttg gctgtaacct tgcgtgatctaa 720

tggtgcga acacaggtcgtg aagggctttct cctctgattt gtttattgaa tgtgaaatgtg 780

tagcaagcct cggctctgct ctgctgataa tggagcacat cggagccaaa gtggaaatgct 840

tactcc tcttaaaa tccatcgcgcccc ctccccatc cagagacc cggctctggtc 900

ttcgctgtgttttgaagcc ataataaag accaagttgtt caccatagggt tttgtatatta 960

tttgctgatcc gattggtctt tcaaggttca agagaaacct gttggggcct cgtgaaggtc 1020

tctgctgaccc tcagcgtgag acagagctatg accagagac ccagagctctct tttcttgtgct 1080

tttgctgctttctg aaagtcctgc cccctggtgg gtcctcagg gaacccagcgt gcttttaagc 1140

tgcagcgc acagacttcg cgcagctgg gctggtggct accagcctca caagaggtctc 1200

tttgctgagct cggccagcgtc gctcttctctt cgggctcag cgcagctgc 1260

tgtaacatcg cagagcgtcct ggtgctgctt ggcagcccag cagaggtgtt 1320

tttgctgagct cggccagcgtc gctcttctctt cgggctcag cgcagctgc 1380

tttgctgagct cggccagcgtc gctcttctctt cgggctcag cgcagctgc 1440

tttgctgagct cggccagcgtc gctcttctctt cgggctcag cgcagctgc 1500

tttgctgagct cggccagcgtc gctcttctctt cgggctcag cgcagctgc 1560

tttgctgagct cggccagcgtc gctcttctctt cgggctcag cgcagctgc 1620

tttgctgagct cggccagcgtc gctcttctctt cgggctcag cgcagctgc 1680

tttgctgagct cggccagcgtc gctcttctctt cgggctcag cgcagctgc 1740

tttgctgagct cggccagcgtc gctcttctctt cgggctcag cgcagctgc 1800

tttgctgagct cggccagcgtc gctcttctctt cgggctcag cgcagctgc 1860

tttgctgagct cggccagcgtc gctcttctctt cgggctcag cgcagctgc 1920

tttgctgagct cggccagcgtc gctcttctctt cgggctcag cgcagctgc 1980

tttgctgagct cggccagcgtc gctcttctctt cgggctcag cgcagctgc 2040

tttgctgagct cggccagcgtc gctcttctctt cgggctcag cgcagctgc 2100

tttgctgagct cggccagcgtc gctcttctctt cgggctcag cgcagctgc 2160

tttgctgagct cggccagcgtc gctcttctctt cgggctcag cgcagctgc 2220

tttgctgagct cggccagcgtc gctcttctctt cgggctcag cgcagctgc 2280

tttgctgagct cggccagcgtc gctcttctctt cgggctcag cgcagctgc 2340

tttgctgagct cggccagcgtc gctcttctctt cgggctcag cgcagctgc 2400

tttgctgagct cggccagcgtc gctcttctctt cgggctcag cgcagctgc 2460

tttgctgagct cggccagcgtc gctcttctctt cgggctcag cgcagctgc 2520

tttgctgagct cggccagcgtc gctcttctctt cgggctcag cgcagctgc 2580

tttgctgagct cggccagcgtc gctcttctctt cgggctcag cgcagctgc 2640

tttgctgagct cggccagcgtc gctcttctctt cgggctcag cgcagctgc 2700

tttgctgagct cggccagcgtc gctcttctctt cgggctcag cgcagctgc 2760

tttgctgagct cggccagcgtc gctcttctctt cgggctcag cgcagctgc 2820
-continued

daacccagg gagcaatgtg aagacaattg ccacctggaga cactgccgtt gacagctatc 2880
daccgcctgg tcgccagctt aatatgcctc gaccttgtaa ggtggaaggcc taccgccttc 2940
catcctcctg gtcgcatagt tcccaaatcg ggaaaccaac ctctatcaac agtcatgagg 3000
tggatatt ccaacggtgg atcaatgcgct ctggtggcag acacacttctt ccacactttt 3060
catgttccca tggagcctgc cccaggcccc ctcaggttat cggagctcgg gagaatcctg 3120
cetgttattg cttgtttgac gactaagcag acttcttttt ccagacccccc gtggtatagc 3180
tcgagtcttt tgcgacccc taaagccgaac ctgtaacccgc atgcgctggc tagacgttagc 3240
ggaattaattc ccaggaggttg aagagccacag gctgggaccc atataggata goccacacgg 3300
tcataaacgc cctgcaacag gtctatcaca cgtactagta gaaatacagg caggagcaga 3360
aggggtctat ctcgctgacgc ctcaaaagtc acgctgcacc gccaaagtcac ccagggttcc 3420
ccagagatgt gcagccgctc gacgcagttgc tccagtttcct cctgggctgct ttctggctacc 3480
catattatat gcaagcaggac tatcagctga ccaaatgtagt gaaagtgagg aagagagtgtg 3540
aactgcgaca cttggaacacc tccggctgtgc caagtttccca tggaggaagag aagaggtctc 3600
tcagggggcc gggccagcgc tctgtgccca acaagtctca ctcgagaaca tgcggagcaca 3660
aaaacccgcg gctaaacccga cccctctcagc agacgacagg gcagagaggtgc gaggagggctg 3720
acccttttgt gccttctcag gcctgctagc ggtgctgcgac cctgggggcag cggaggtgcct 3780
tgaactctgtg caagagcgag tcttggtgaca tccctctcata catcaccgaa aacgaggttgt 3840
ggtgcaacaa cctgcaacac gaggataactg ataggtatatt ttcaccacaa acctcacatac 3900
atggacgcttc gaaactcctag agctgctatg tctagctctag cttggagttc gctgcctgtc 3960
cctctgtgag caacccctgct tggctaatag gcctagacgtt caagtttggta ctgtacatat 4020
tgacttccaa caacaaaaac acggctcgcga cccagcaggg ccctgggagcg taccacagac 4080
aggtcatatt cccacaaaccg atgcctctgg ccaggagggga tgtgtttcctg tacgcccttg 4140
tctctgaggg ctcctctcagc agtgcgctagc cttgcatactg tcaaggtgaa ggtgctgtga 4200
ggagcagatt ccaagacagct gcacatttgcc acaagttttca ctcacaccgc ctggaggttg 4260
agaaagacgc cattgcggcag ggtggcctgctg acagtttata caagattgcg gaggacctgc 4320
tcaccctcta gcacagctgg ctgtccacact acgctttttc ctcttcctgg ccctggccac 4380
tcctgagctg aacccagcag gcctgcgtgct gtctcctcct ttcgctccat 4440
tcgatacaact cctgccccct gcacgatcgc acacagacgg ccaggagcgc cttttacacc gccagcccttac 4500
cacagagctt ccaagagatga ggaaggtggag aagataggaac cttcgtgcaag ccgatttacaag 4560
agcagcgacg agtgcgctttc ccaagaggtgg ggaaccaagt gcagtttggtt atacagttgtgctgggtcct 4620
agttgacgctgg tctcctggtt cttgcgctctt gtcgcctggc cccagcagcct cccagcagctctgct 4680
cacagagcgctt gccgcatcgt cctcatttttg tggccagacc tcttataaag gctcaatgtgcagt 4740
aggtgcgctagc ctcgtctgccca gctgtgtgcc aagccagtca aggtgcgctct atttcctacaag 4800
cctccagcg gcctgcgtgc gaacccagag aagcccttaa cccagaggtg cttggagagcag 4860
ccagcgagata tgcgtgctcgc atggagcgtc gttggcgcact tccctcttttc aagatgagacaag 4920
attaaactgtg ggtggaagct cagagggactc gcggagggct gtctgtggcag gcgctcaaca 4980
agttgctgct ctcgtctgccca gccagaggttg aagcccttctc aagccaggtg cagctgtccat 5040
tcttttgggct tcccatctac aaccctgtgc ctcgctatttc cctcacactg gcccctgcaaca 5100
tctcttcttt tcagcagagc agagaggtttg tccctctgccgagatgctctgcgcgcagctctcc 5160
cttgctcttt ttgctgccgag atggacgctct ttcgctccag gaggatctctg aactgggctaa 5220
agggagcata caatcagcct ccaatattatg tcacagcagaa tggagtgtcc cagcgggaag 5280
aacagacaat caatgacaact gcaggagtcct actacctctgg gaacctacatc aatgagggcc 5340
tcaagcgtg gcagcagaca gttgagccctct gctagatacag gctgagtcaca 5400
attttgatgt ggccacagccgt ttttcagaga gatttggtct gcatttggtg acactacagt 5460
acctctctct gccaagagtc ccacaaagcat caggaagtct ctaagcctct gttgctccag 5520
gcactgttgtt ccctgccccc gtccagggcc ttcagctggct tgtcctacac ccagaagtgcc 5580
gacccaccag cagccagcttg agacagaggg agggcaggtc cttggggcata atgcttggca 5640
ccacagagc acacagacgct ttgtagtcttc tttttttcttt tggcctctct gggactctgt 5700
gctggcgatt tctgctcatac aagtaagcgca agcgctctaa gcacaggaga gcacaaagaa 5760
gccacagaga attagcgcccg gttgtctttcat tctcagtata gttccacctca agttctatga 5820
agagccctca gttctctcct ctaaccttac ccgccaccaaa acacccatgg tctcttgcag 5880
cctgtctatc tggagtttcc tataagccct tccgtgcacc ttaagagatt ccattaacttc 5940
gaaggtttgc gaactgggcgactggggcctt cctgcttcga actgtcaggt 6000
tatttcgggt attcgggaa aagtagagccttgtctggtcgacctttggtcgctgtccggct 6060
ggctgttggaa cccatttatt cagcaggcctt cgcagagtcg tatttcgttgc gttgctcag 6120
ctctgtaaag ggagacacag cgtaaaatcctcctcatttaa ggaatcatacttc acctcaatgg 6180
ataagcctca atatacttcct tgtcctctct gcagagtctct cctagcttaa cattggttgc 6240
tttccagaga ataaaagcag aagacgtgtaacctcc 6274

<210> SEQ ID NO 2
<211> LENGTH: 42
<212> TYPE: DNA
<213> ORGANISM: artificial sequence
<220> FEATURE:
<222> OTHER INFORMATION: Primer LPH1
<400> SEQUENCE: 2
aaagatcctg ttctctagaa atggagctgt cttggtcatgt ag 42

<210> SEQ ID NO 3
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: artificial sequence
<220> FEATURE:
<222> OTHER INFORMATION: Primer CLPHI300
<400> SEQUENCE: 3
ttgcatgcat aagctttaat tttctctcgg a tttccccagtc 40

<210> SEQ ID NO 4
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: artificial sequence
<220> FEATURE:
<222> OTHER INFORMATION: Primer LPH2841
<400> SEQUENCE: 4
aaagacaatg ccactggaga catcg 25

<210> SEQ ID NO 5
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: artificial sequence
<220> FEATURE:
<222> OTHER INFORMATION: Primer CLPH3600
What is claimed is:

1. A composition for treating lactose intolerance in a mammal, comprising *Lactobacillus acidophilus* bacteria that are genetically modified to express a mammalian lactase-phlorizin hydrolase enzyme under the control of a CMV promoter, wherein said genetically modified *Lactobacillus acidophilus* bacteria have an enhanced ability to adhere to the intestinal surface than *Lactobacillus acidophilus* bacteria that are not genetically modified.

2. The composition of claim 1, wherein said intestinal surface is within the small intestine.

3. The composition of claim 1, wherein said *Lactobacillus acidophilus* bacteria are present as a live suspension.

4. The composition of claim 1, wherein said *Lactobacillus acidophilus* bacteria are present as a lyophilized powder.

5. The composition claim 4, further comprising an acid resistant coating.